
Proceeding of the First International Conference on Modeling, Simulation and Applied Optimization, Sharjah, U.A.E. February 1-3, 2005

ON SOLVING OPTIMIZATION PROBLEMS USING
BOOLEAN SATISFIABILITY

Fadi A. Aloul

American University of Sharjah
Department of Computer Engineering

P.O. Box 26666, Sharjah, UAE

faloul@ausharjah.edu
ABSTRACT
The last few years have seen significant advances in Boolean sat-
isfiability (SAT) solving. This has lead to the successful deploy-
ment of SAT solvers in a wide range of problems in Engineering
and Computer Science. In general, most SAT solvers are applied to
Boolean decision problems that are expressed in conjunctive nor-
mal form (CNF). While this input format is applicable to some en-
gineering tasks, it poses a significant obstacle to others. One of the
main advances in SAT is generalizing SAT solvers to handle stron-
ger representation of constraints. Specifically, pseudo-Boolean
(PB) constraints which are efficient in representing counting con-
straints and can replace an exponential number of CNF constraints.
Another significant advantage of PB constraints is its ability to ex-
press Boolean optimization problems. This allows for new applica-
tions that were never handled by SAT solvers before. In this paper,
we describe two methods to solve Boolean optimization problems
using SAT solvers. Both methods are implemented and evaluated
using the SAT solver PBS. We develop an adaptive flow that ana-
lyzes a given Boolean optimization problem and selects the solving
method that best fits the problem characteristics. Empirical evi-
dence on a variety of benchmarks shows that both methods are
competitive. The results also show that SAT-based methods tend
to outperform generic integer linear programming (ILP) solvers.

KEYWORDS
Optimization Algorithms, Boolean Satisfiability, CNF, pseudo-
Boolean, backtrack search.

1. INTRODUCTION
The Boolean Satisfiability (SAT) problem has been the topic of in-
tensive research over the past few decades. Given a set of Boolean
variables and a set of constraints expressed in product-of-sum form
(also known as conjunctive normal form (CNF)), the goal is to find
a variable assignment that satisfies all constraints or prove that no
such assignment exists. Despite the SAT problem’s worst-case ex-
ponential complexity [11], recent algorithmic advances along with
highly efficient solver implementations [7, 17, 19, 21, 28] have en-
abled the successful deployment of SAT solvers to a wide range of
application domains. Such applications include formal verification
[8], FPGA routing [22], global routing [5], power leakage estima-
tion [1], timing analysis [24], logic synthesis [20], and sequential
equivalence checking [9]. SAT has also been extended to a variety
of applications in Artificial Intelligence including other well
known NP-complete problems such as graph colorability [23], ver-
tex cover, hamiltonian path, and independent sets [13]. In general,

SAT solvers require that the problem be represented in CNF form.
While this is applicable to some Engineering tasks, it poses a sig-
nificant obstacle to many others. In particular to tasks that need to
express “counting constraints” which impose a lower or upper
bound on a certain number of objects. Expressing such constraints
in CNF cannot be efficiently done. Recently, SAT solvers were ex-
tended to handle pseudo-Boolean (PB) constraints which can easi-
ly represent “counting constraints” [5, 6, 10, 16, 27]. PB
constraints are more expressive and can replace an exponential
number of CNF constraints [5]. Besides expressing Boolean deci-
sion problems, a key advantage of using PB constraints is the abil-
ity to express Boolean optimization problems. These problems
were traditionally handled as instances of Integer Linear Program-
ming (ILP). They represent 0-1 ILP problems that call for the min-
imization or maximization of a linear objective function subject to
a set of linear PB constraints.

In this paper, we describe two SAT-based approaches to solve
Boolean optimization problems. The algorithms we present can be
adapted to any SAT solver. The first approach is based on a linear
sweep search and the second is based on a binary sweep search.
Both approaches are implemented on top of the SAT solver PBS
[5]. Experiments are conducted on a variety of instances from
FPGA routing, N-queens, and graph coloring. The performance of
both approaches is compared to the performance of the generic
commercial ILP solver CPLEX 7.0. We present experimental evi-
dence showing that (i) SAT solvers can outperform generic ILP
solvers and (ii) both linear and binary sweep search are competi-
tive. Therefore, we propose a flow that selects the type of search
that is best suited to the problem in question. We perform an em-
pirical evaluation comparison of linear vs. binary sweep search and
point out that the adaptive flow we propose picks the best config-
uration in most cases.

The paper is organized as follows. In Section 2 we review re-
cent advances in Boolean satisfiability. Pseudo-Boolean con-
straints are defined in Section 3. We then describe, in Section 4, the
two SAT-based approaches to solve Boolean optimization prob-
lems. Both approaches are analyzed and compared against the per-
formance of the generic ILP solver in Section 5. We conclude in
Section 6 with a summary of the paper’s main contributions.

2. BOOLEAN SATISFIABILITY
The satisfiability problem involves finding an assignment to a set
of binary variables that satisfies a given set of constraints. In gen-
eral, these constraints are expressed in conjunctive normal form
(CNF) or as is commonly known as product-of-sum form. A CNF
formula on binary variables consists of the con-ϕ n x1 … xn, ,
ICMSAO/05-1

Proceeding of the First International Conference on Modeling, Simulation and Applied Optimization, Sharjah, U.A.E. February 1-3, 2005
junction (AND) of clauses each of which consists
of the disjunction (OR) of literals. A literal is an occurrence of
a Boolean variable or its complement. We will refer to a CNF for-
mula as a clause database.

A variable is said to be assigned when its logical value is set
to 0 or 1 and unassigned otherwise. A literal is a true (false) lit-
eral if it evaluates to 1 (0) under the current assignment to its asso-
ciated variable, and a free literal if its associated variable is
unassigned. A clause is said to be satisfied if at least one of its lit-
erals is true, unsatisfied if all of its literals are set to false, unit if all
but a single literal are set to false, and unresolved otherwise. A for-
mula is said to be satisfied if all its clauses are satisfied, and unsat-
isfied if at least one of its clauses is unsatisfied.

As an example, a CNF instance consists
of 3 variables, 2 clauses, and 4 literals. The assignment

 leads to a conflict, whereas the assignment
 satisfies .

Most modern SAT solvers [7, 17, 19, 21, 28] are based on the
original Davis-Putnam backtrack search algorithm [14]. The algo-
rithm performs a search process that traverses the space of vari-
able assignments until a satisfying assignment is found (the
formula is satisfiable), or all combinations have been exhausted
(the formula is unsatisfiable). It maintains a decision tree to keep
track of variable assignments and can be viewed as consisting of
three main engines: Decision, Deduction, Diagnosis engines.

Originally, all variables are unassigned. The algorithm begins
by choosing a decision assignment to an unassigned variable. After
each decision, the deduction engine determines the implications of
the assignment on other variables. This is obtained by forcing the
assignment of the variable representing an unassigned literal in an
unresolved clause, whose all other literals are assigned to 0, to sat-
isfy the clause. This is referred to as the unit clause rule and the re-
peated application of the unit clause rule over the given clause
database is known as Boolean constraint propagation (BCP). If no
conflict is detected, the algorithm makes a new decision on a new
unassigned variable. Otherwise, the diagnosis engine backtracks
by unassigning one or more recently assigned variables and the
search continues in another area of the search space.

Several powerful methods have been proposed to expedite the
backtrack search algorithm. These methods have focused on im-
proving the DLL engines or the data structure used to represent the
SAT instance. We review some of the best methods next.

2.1 Conflict Diagnosis

One of the best methods is known as the conflict diagnosis proce-
dure [19] and has been implemented in almost all SAT solvers.
Whenever a conflict is detected, the procedure analyzes the vari-
able assignments that cause one or more clauses to become unsat-
isfied. Such analysis can identify a small subset of variables whose
current assignments can be blamed for the conflict. These assign-
ments are turned into a conflict-induced clause and augmented
with the clause database to avoid regenerating the same conflict in
future parts of the search process. In essence, the procedure per-
forms a form of learning from the encountered conflicts. Recogniz-
ing that the current conflict is caused by variable assignments from
earlier levels in the decision tree enables non-chronological back-
tracking, i.e. backtracking to earlier levels rather than the previous

level, potentially pruning large portions of the search space. Signif-
icant speedups have been achieved with the addition of conflict-in-
duced clauses, as they tend to effectively prune the search space.

2.2 Random Restarts

Besides conflict diagnosis, recent studies have shown that using
random restarts can be very effective in solving hard SAT instanc-
es [18, 21]. A SAT solver may often get stuck in a “bad” region of
the search space because of the sequence of decision assignments
it had made. The restart process helps to extricate the solver from
such regions by periodically resetting all decision and implication
assignments and randomly selecting a new sequence of decisions,
thus insuring that different subtrees are explored each time. Addi-
tionally, all learned clauses in the various probes of the search
space are kept and help boost the effectiveness of subsequent re-
starts.

2.3 Decision Heuristics

Intelligent decision heuristics also played an important role in en-
hancing SAT solvers performance. Several studies have proposed
various decision heuristics that can be classified as static [3, 19] or
dynamic [19, 21, 28]. For example, the GRASP SAT solver [19] is
typically used with the dynamic largest individual sum (DLIS) de-
cision heuristic which selects the literal that appears in the largest
number of unresolved clauses. It also implements the dynamic
largest combined sum (DLCS) decision heuristic which selects the
variable that appears in the largest number of unresolved clauses.
A recent heuristic that has been found to be particularly effective
in a variety of problems is the variable state independent decaying
sum (VSIDS) heuristic introduced in Chaff [21]. This heuristic
maintains two counters for every variable that are incremented if a
positive (respectively negative) literal is identified in a new con-
flict-induced clause. The variable with the highest counter is se-
lected for the next decision. Counters are also periodically divided
by a constant to emphasize variables identified in recent conflicts.

2.4 Efficient Boolean Constraint Propagation

SAT solvers typically spend most of their times in the BCP proce-
dure [21]. In a conventional implementation of BCP, an assign-
ment to a variable triggers a traversal of all clauses that contain
literals of that variable to check whether they have become unit or
unsatisfied. In other words, an implication step requires time
bounded by the number of existing literals of the assigned variable.
This overhead can be significantly reduced by adopting a form of
“lazy” evaluation that avoids unnecessary traversals of the clause
database. In 2001, Moskewicz et al. proposed the concept of watch
literals that keeps track of any two unassigned literals per clause
[21]. The basic idea is that a clause can never get unsatisfied or lead
to an implication as long as the two watched literals are unas-
signed. Unlike the conventional approach, an assignment to a vari-
able triggers a traversal to all clauses that contain watched literals
of that variable. Empirically, such BCP optimizations show great
improvements over conventional BCP implementations, especially
for problem instances containing large numbers of large clauses.
For example, in a SAT instance consisting of -literal clauses,
this enhancement reduces BCP’s overhead from to , which
is substantial for typical instances with .

m ω1 … ωm, ,
k l

x
l

f a b∨() b c∨()=

a 0 b, 1 c, 0= = ={ }
a 0 b, 1 c, 1= = ={ } f

2n

n k
kn 2n

k 2»
ICMSAO/05-2

Proceeding of the First International Conference on Modeling, Simulation and Applied Optimization, Sharjah, U.A.E. February 1-3, 2005
3. PSEUDO BOOLEAN CONSTRAINTS
Boolean Satisfiability problems can also include pseudo-Boolean
(PB) expressions, which are expressions of the form

(1)

where and are literals of Boolean variables. Note
that any CNF clause can be viewed as a PB constraint, e.g. clause

 is equivalent to . Using the rela-
tions:

•

•

•

any arbitrary PB constraint can be converted to the normalized
form of (1) consisting of only positive coefficients. This normal-
ization facilitates more efficient algorithms.

Figure 1 shows an example of a scheduling problem expressed
using CNF and PB constraints. The problem assumes a company
consisting of 3 employees and 3 working shifts per day. At least
one employee must be working during each shift. Each employee
can work upto 1 shift per day. Variable denotes employee i
working during shift j. Clearly, the PB encoding, consisting of 6
PB constraints and 18 literals, is more efficient than the CNF en-
coding, consisting of 12 clauses and 27 literals.

4. BOOLEAN OPTIMIZATION PROBLEMS
Besides solving consistency problems, handling PB constraints ex-
pands the ability of SAT solvers to solve Boolean optimization
problems that were traditionally handled as instances of Integer
Linear Programming (ILP) [23, 87]. These so-called 0-1 ILP prob-
lems call for the minimization or maximization of a linear objective
function:

(2)

subject to a set of linear PB constraints where ,
, and . We describe two common SAT-

based approaches to solve Boolean optimization problems. Both
approaches convert the objective function to a PB constraint with
a sliding right-hand-side (RHS) goal and proceed to solve a se-
quence of SAT instances that differ only in the value of that goal.
The first approach is based on a linear sweep search and the second
approach is based on a binary sweep search. Both approaches are
described next.

4.1 Linear Sweep Search Algorithm

The approach performs a linear sweep search on the possible val-
ues of the objective function, starting from the initial goal, requir-
ing at each step that the computed solution have a better value than
the last computed value. To illustrate, assume a minimization sce-
nario, denote the sequence of SAT instances by and
let be the goal for the ith instance. Initially the goal of is set
to be:

(3)

where is total number of literals in the objective function. The
process proceeds to solve all instances starting with instance .
If the ith instance is satisfiable, substituting its solution in the ob-
jective function constraint should yield a new goal value .
The goal for instance is now set to and the process is
repeated. The goal reached in the last satisfiable instance is re-
turned by the solver as the optimal value of the objective function.

4.2 Binary Sweep Search Algorithm

Another concept that can be used for solving Boolean optimization
problems is the binary sweep search algorithm. The method is
based on the idea of testing the SAT instance whose goal is
the center value of all possible optimal values. Two variables, best-
Sat and bestUns, are maintained that store the best identified satis-
fiable value and the best identified unsatisfiable value,
respectively. Assuming a minimization scenario, the approach
solves a sequence of SAT instances . Initially the goal
and bestSat are set to the value computed in (3) and bestUns is set
to 0. If the instance is satisfiable, its solution is substituted in the
objective function constraint yielding a new goal value .
The bestSat variable is set to . On the other hand, if the instance
is unsatisfiable, the bestUns variable is set to . The goal for the
instance is then set to and the
process is repeated. The optimal value of the objective function is
bestSat whenever the bestUns value is equal to .

a1x1 a2x2 … anxn+ + + b≤

ai b Z+∈, xi

a b c∨ ∨() a b c+ + 1≥()

xi 1 xi–()=

Ax b=() Ax b≤() Ax b≥()⇔

Ax b≥() Ax– b–≤()⇔

Eij

aixi
·

i 1=

n

∑

m Ax b≤ b Zn∈
A Zm Zn×∈ x 0 1,{ }n∈

I0 I1 I2 …, , ,
ĝi I0

ĝ0 aj
j 1=

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

1+=

n
Ii I0

gi ĝi≤
Ii 1+ gi 1–

Figure 1. Two possible encodings of the scheduling problem
consisting of 3 employees and 3 working shifts per day.
denotes employee working during shift . Constraint #1
indicates that at least one employee is working during each
shift. Constraint #2 indicates that each employee can work
upto 1 shift per day.

Eij
i j

Const-
raint CNF Encoding PB Encoding

#1

#2

E11 E21 E31∨ ∨()

E12 E22 E32∨ ∨()

E13 E23 E33∨ ∨()

E11 E21 E31+ + 1≥()

E12 E22 E32+ + 1≥()

E13 E23 E33+ + 1≥()

E11 E12∨() E11 E13∨()

E12 E13∨() E21 E22∨()

E21 E23∨() E22 E23∨()

E31 E32∨() E31 E33∨()

E32 E33∨()

E11 E12 E13+ + 1≤()

E21 E22 E23+ + 1≤()

E31 E32 E33+ + 1≤()

Ii ĝi

I0 I1 I2 …, , ,

gi ĝi≤
gi

ĝi
Ii 1+ bestSat bestUns+() 2⁄()

bestSat 1–
ICMSAO/05-3

Proceeding of the First International Conference on Modeling, Simulation and Applied Optimization, Sharjah, U.A.E. February 1-3, 2005
5. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the two proposed methods
for solving Boolean optimization problems. Our benchmarks in-
clude optimization instances from

• Graph coloring [15]: minimize the number of colors used to

color each node in an undirected graph such that no two

nodes sharing the same edge have the same color. Initial

number of colors in all instances was set to 20.

• N-queens [25]: maximize the number of queens that can be

placed on an chess board as long as no two queens can

attack each other.

• FPGA routing (SAT) [3]: minimize the number of wires

used to route a given number of nets.

• FPGA routing (UNS) [3]: maximize the number of routed

nets in an unsatisfiable FPGA instance.

In order to speed up the search process, all instances were pre-pro-
cessed with ShatterPB [2] which augments the SAT instance with
symmetry-breaking predicates (SBPs). The work in [2, 3, 4, 12]

showed that the use of SBPs can significantly speed up the solution
of SAT instances. We use the recent SAT solver PBS [5] (with set-
tings “-D 1”) which incorporates modern SAT techniques de-
scribed in Section 2 and also handles PB constraints. PBS was
modified to solve Boolean optimization problems using the linear
and binary sweep search. We also compare the performance of
PBS against the commercial ILP solver CPLEX version 7.0. All
experiments were performed on a 750MHz Sun-Blade 1000 work-
station with 2GB RAM running the Solaris operating system. All
time-outs are set to 1000 seconds.

Table 1 lists the results of solving 35 instances. For each in-
stance the table lists the instance name and family, its objective
type (e.g. Min for minimization and Max for maximization), the
optimal value of the objective function, and the initial solution
when solving the instance using PBS. The remaining columns
show the run times and the best reached objective value of PBS
(using the linear and binary sweep search methods) and CPLEX
solvers, respectively. We observe the following:

• Except for the N-queens instances, PBS outperforms

CPLEX and in some cases with a substantial margin (e.g.

FPGA-SAT instances).

NxN

ĝ0

Table 1. Results for optimization instances using the SAT-based 0-1 ILP PBS solver and generic ILP CPLEX solver.
PBS was configured to use linear and binary sweep search. Best results for each instance are shown in bold.

Family
(Obj -
Type)

Instance
name

Optimal
Soln

Initial
Soln

PBS CPLEX
Linear Binary

Time Best
SolnTime Best

Soln Time Best
Soln

G
ra

ph
 C

ol
or

in
g

(M
in

)

anna 11 20 24.5 11 67.8 11 774 11
david 11 20 2.85 11 6.47 11 >1000 n/a
DSJC125.1 5 20 39.73 5 17.4 5 >1000 n/a
games120 9 20 11.18 9 3.96 9 >1000 n/a
jean 10 20 28.4 10 14.4 10 >1000 n/a
miles250 8 20 1.94 8 1.83 8 605 8
myciel3 4 11 0.07 4 0.08 4 0.19 4
myciel4 5 20 0.22 5 0.33 5 20.8 5
myciel5 6 20 29.5 6 10.5 6 >1000 n/a
queen5_5 5 20 0.22 5 0.18 5 0.26 5
queen6_6 7 20 0.59 7 2.65 7 174 7
queen7_7 7 20 8.31 7 9.17 7 475 7
queen8_12 12 20 1.08 12 3.3 12 >1000 n/a

N
-Q

ue
en

(M
ax

) NQueens8 8 8 0.1 8 0.35 8 0.01 8
NQueens9 9 9 0.69 9 2.71 9 0.04 9
NQueens10 10 10 5 10 20.5 10 0.6 10
NQueens11 11 11 69.2 11 228 11 0.12 11

FP
G

A
-S

AT
(M

in
)

fpga20_15 30 30 0.61 30 1.46 30 200 30
fpga25_15 30 30 1.86 30 4.07 30 >1000 n/a
fpga30_15 30 30 0.99 30 2.49 30 >1000 n/a
fpga25_20 40 40 3.71 40 13.5 40 >1000 n/a
fpga30_20 40 40 34.9 40 149 40 >1000 n/a
fpga35_20 40 40 4.35 40 14.6 40 >1000 n/a

FP
G

A
-U

N
S

(M
ax

)

chnl7_8 406 268 0.43 406 0.38 406 25.1 406
chnl7_9 518 317 1.68 518 1.74 518 194 518
chnl7_10 644 383 8.01 644 7.2 644 464 644
chnl7_11 784 474 40.9 784 35.7 784 >1000 n/a
chnl8_9 592 382 5.35 592 1.65 592 92.8 592
chnl8_10 736 442 3.47 736 3.53 736 >1000 n/a
chnl8_11 896 546 20.8 896 32.2 896 >1000 n/a
chnl8_12 1072 606 211 1072 156 1072 >1000 n/a
chnl9_10 828 506 3.05 828 2.33 828 362 828
chnl9_11 1008 604 11.9 1008 5.5 1008 >1000 n/a
chnl9_12 1206 700 60.2 1206 70.4 1206 >1000 n/a
chnl9_13 1422 850 >1000 1422 765 1422 >1000 n/a
ICMSAO/05-4

Proceeding of the First International Conference on Modeling, Simulation and Applied Optimization, Sharjah, U.A.E. February 1-3, 2005
• Both the linear and binary sweep search methods are

competitive.

• The linear sweep search tends to beat the binary sweep

search for instances whose initial solution is close to the

optimal objective value. For example, the SAT solver’s

initial solution for all the FPGA-SAT and N-queens

instances is equal to the optimal value of the objective

function.

• The binary sweep search was on average faster for instances

whose initial solution is far from the optimal solution.

Overall, the above results show that SAT-based methods are in
general faster than generic ILP solvers, such as CPLEX, since
SAT-based solvers are expected to take advantage of the Boolean
nature of the problem. The only exception, in Table 1, was the N-
queens set which was solved with CPLEX in a fraction of a second.
Given the black-box nature of the CPLEX solver it was hard to jus-
tify its exceptional performance on these instances. However, anal-
ysis of the constraints in these instances showed that they are
highly structured. We conjecture that CPLEX incorporates ad-
vanced algorithms that detect and simplify certain structured in-
stances, such as the N-queens instances.

In terms of selecting whether to use a linear or binary sweep
search, we propose to use the linear (binary) method whenever the
initial solution is close (far) from the upper bound of the optimal
solution. This poses the question of how to identify the upper
bound of the optimal solution for an optimization instance? An ob-
vious answer is to use the information provided with the instance
to guess the upper bound. For example, the 8-queens instance con-
sists of an grid and is likely to fit upto 8 queens only. The SAT
solver’s initial solution is 8. The remaining processing time is
spent on proving that this is the optimal solution. Another example
is the which represents an FPGA instance with nets.
According to Table 1, each FPGA-SAT instance needs at least 2
wires per net. Hence, the FPGA20_15 instance is likely to use at
least 30 wires which turns out to be the initial and optimal solution.
An alternative solution to identify the upper bound is to use some
form of branch-and-bound which gives an estimate of the optimal
value of the objective function.

6. CONCLUSIONS
This work is motivated by the observation that SAT solvers can be
extended to handle Boolean optimization problems, which is use-
ful in many applications. We describe two methods to solve Bool-
ean optimization problems using SAT solvers. One method is
based on a linear sweep search and the other is based on a binary
sweep search. Both methods can be easily adapted to any SAT
solver. Empirically, we observe that both approaches are competi-
tive. Therefore, we propose an adaptive flow that picks either the
linear or binary search configuration, depending on the instance’s
characteristics, to achieve the most effective Boolean optimization
for a given instance. We also show that SAT-based methods can
outperform generic ILP solvers in many cases. Our on-going work
deals with identifying new metrics (e.g. branch-and-bound) that
can help improve our adaptive flow.

7. REFERENCES
[1] F. A. Aloul, S. M. Hassoun, K. A. Sakallah, D. Blaauw,

“Robust SAT-Based Search Algorithm for Leakage Power
Reduction,” in Proc. of the International Workshop on Power
and Timing Modeling, Optimization and Simulation (PAT-
MOS), 167-177, 2002.

[2] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah,
“ShatterPB: Symmetry-Breaking for Pseudo-Boolean For-
mulas,” in Proc. of the Asia South Pacific Design Automation
Conference (ASPDAC), 884-887, 2004.

[3] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah,
“Efficient Symmetry-Breaking for Boolean Satisfiability,” in
Proc. of the International Joint Conference on Artificial
Intelligence (IJCAI), 271-282, 2003.

[4] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah,
“Solving Difficult Instances of Boolean Satisfiability in the
Presence of Symmetries,” in IEEE Trans. on Computer Aided
Design, 22(9), 1117-1137, 2003.

[5] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah,
“Generic ILP versus Specialized 0-1 ILP: An Update,” in
Proc. of the International Conference on Computer-Aided
Design (ICCAD), 450-457, 2002.

[6] P. Barth, “A Davis-Putnam based Enumeration Algorithm for
Linear Pseudo-Boolean Optimization,” Technical Report
MPI-I-95-2-003, Max-Planck-Institut Für Informatik, 1995.

[7] R. J. Bayardo Jr. and R. C. Schrag, “Using CSP Look-Back
Techniques to Solve Real World SAT Instances,” in Proc. of
the 14th National Conference on Artificial Intelligence, 203-
208, 1997.

[8] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Sym-
bolic Model Checking using SAT procedures instead of
BDDs,” in Proc. of the Design Automation Conference
(DAC), 317-320, 1999.

[9] P. Bjesse and K. Claessen, “SAT-based Verification Without
State Space Traversal,” in Proc. of Formal Methods in Com-
puter-Aided Design (FMCAD), 372-389, 2000.

[10] D. Chai and A. Kuehlmann, “A Fast Pseudo-Boolean Con-
straint Solver,” in Proc. of the Design Automation Confer-
ence (DAC), 830-835, 2003.

[11] S. Cook, “The Complexity of Theorem Proving Procedures,”
in Proc. of the 3rd Annual ACM Symposium on Theory of
Computing, 151-158, 1971.

[12] J. Crawford, M. Ginsberg, E. Luks and A. Roy, “Symmetry-
breaking Predicates for Search Problems,” in Proc. of the
International Conference on Principles of Knowledge Repre-
sentation and Reasoning, 148-159, 1996.

[13] N. Creignou, S. Kanna, and M. Sudan, “Complexity Classifi-
cations of Boolean Constraint Satisfaction Problems,” SIAM
Press, 2001.

[14] M. Davis, G. Logemann, and D. Loveland, “A Machine Pro-
gram for Theorem Proving,” in Journal of the ACM, (5)7, pp.
394-397, 1962.

[15] DIMACS Graph Coloring Instance. http://mat.gsia.cmu.edu/
COLOR/instances.html

[16] H. Dixon and M. Ginsberg, “Inference Methods for a
Pseudo-Boolean Satisfiability Solver,” in Proc. of the
National Conference on Artificial Intelligence (AAAI), 635-
640, 2002.

8x8

FPGAi_j j
ICMSAO/05-5

Proceeding of the First International Conference on Modeling, Simulation and Applied Optimization, Sharjah, U.A.E. February 1-3, 2005
[17] E. Goldberg and Y. Novikov, “BerkMin: A fast and robust
SAT-solver,” in Proc. of the Design Automation and Test
Conference in Europe (DATE), 142-149, 2002.

[18] C. P. Gomes, B. Selman, and H. Kautz, “Boosting Combina-
torial Search Through Randomization,” in Proc. of the
National Conference on Artificial Intelligence (AAAI), 431-
437, 1998.

[19] J. Marques-Silva and K. Sakallah, “GRASP: A Search Algo-
rithm for Propositional Satisfiability,” in IEEE Transactions
on Computers, (48)5, 506-521, 1999.

[20] S. Memik and F. Fallah, “Accelerated Boolean Satisfiability-
Based Scheduling of Control/Data Flow Graphs for High-
Level Synthesis,” in Proc. of the International Conference on
Computer Design (ICCD), 2002.

[21] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, “Chaff: Engineering an Efficient SAT Solver,” in
Proc. of the Design Automation Conference (DAC), 530-535,
2001.

[22] G. Nam, F. A. Aloul, K. A. Sakallah, and R. Rutenbar, “A
Comparative Study of Two Boolean Formulations of FPGA
Detailed Routing Constraints,” in the Proc. of the Interna-
tional Symposium on Physical Design (ISPD), 222-227,
2001.

[23] A. Ramani, F. A. Aloul, I. L. Markov, and K. A. Sakallah,
“Breaking Instance-Independent Symmetries in Exact Graph
Coloring,” in Proc. of the Design, Automation, and Test in
Europe Conference (DATE), 324-329, 2004.

[24] L. Silva, J. Silva, L. Silveira and K. Sakallah, “Timing Anal-
ysis Using Propositional Satisfiability,” in IEEE Interna-
tional Conference on Electronics, Circuits and Systems,
1998.

[25] R. Sosic and J. Gu, “Fast Search Algorithms for the N-
Queens Problem,” in IEEE Trans. on Systems, Man, and
Cybernetics. 21(6), 1572-1576, 1991.

[26] J. Walsor, “Solving Linear Pseudo-Boolean Constraint Prob-
lems with Local Search,” in Proc. of the National Conference
on Artificial Intelligence (AAAI), 269-274, 1997.

[27] J. Whittemore, J. Kim, and K. Sakallah, “SATIRE: A New
Incremental Satisfiability Engine,” in Proc. of Design Auto-
mation Conference (DAC), 542-545, 2001.

[28] H. Zhang, “SATO: An Efficient Propositional Prover,” in Intl.
Conference on Automated Deduction, 272-275, 1997.

[29] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik, “Effi-
cient Conflict Driven Learning in a Boolean Satisfiability
Solver,” in Proc. of the International Conference on Com-

puter Aided Design (ICCAD), pp. 279-285, 2001.
ICMSAO/05-6

	On Solving Optimization Problems Using Boolean Satisfiability
	ABSTRACt
	Keywords
	1. INTRODUCTION
	2. Boolean Satisfiability
	2.1 Conflict Diagnosis
	2.2 Random Restarts
	2.3 Decision Heuristics
	2.4 Efficient Boolean Constraint Propagation

	3. Pseudo boolean constraints
	(1)

	4. Boolean Optimization Problems
	(2)
	4.1 Linear Sweep Search Algorithm
	(3)

	4.2 Binary Sweep Search Algorithm
	Figure 1. Two possible encodings of the scheduling problem consisting of 3 employees and 3 working shifts per day. denotes emplo...

	5. EXPERIMENTAL EVALUATION
	Table 1. Results for optimization instances using the SAT-based 0-1 ILP PBS solver and generic ILP CPLEX solver. PBS was configured to use linear and binary sweep search. Best results for each instance are shown in bold.

	6. CONCLUSIONS
	7. REFERENCES
	[1] F. A. Aloul, S. M. Hassoun, K. A. Sakallah, D. Blaauw, “Robust SAT-Based Search Algorithm for Leakage Power Reduction,” in Proc. of the International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), 167-177, 2002.
	[2] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah, “ShatterPB: Symmetry-Breaking for Pseudo-Boolean Formulas,” in Proc. of the Asia South Pacific Design Automation Conference (ASPDAC), 884-887, 2004.
	[3] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah, “Efficient Symmetry-Breaking for Boolean Satisfiability,” in Proc. of the International Joint Conference on Artificial Intelligence (IJCAI), 271-282, 2003.
	[4] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah, “Solving Difficult Instances of Boolean Satisfiability in the Presence of Symmetries,” in IEEE Trans. on Computer Aided Design, 22(9), 1117-1137, 2003.
	[5] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah, “Generic ILP versus Specialized 0-1 ILP: An Update,” in Proc. of the International Conference on Computer-Aided Design (ICCAD), 450-457, 2002.
	[6] P. Barth, “A Davis-Putnam based Enumeration Algorithm for Linear Pseudo-Boolean Optimization,” Technical Report MPI-I-95-2-003, Max-Planck-Institut Für Informatik, 1995.
	[7] R. J. Bayardo Jr. and R. C. Schrag, “Using CSP Look-Back Techniques to Solve Real World SAT Instances,” in Proc. of the 14th National Conference on Artificial Intelligence, 203- 208, 1997.
	[8] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic Model Checking using SAT procedures instead of BDDs,” in Proc. of the Design Automation Conference (DAC), 317-320, 1999.
	[9] P. Bjesse and K. Claessen, “SAT-based Verification Without State Space Traversal,” in Proc. of Formal Methods in Computer-Aided Design (FMCAD), 372-389, 2000.
	[10] D. Chai and A. Kuehlmann, “A Fast Pseudo-Boolean Constraint Solver,” in Proc. of the Design Automation Conference (DAC), 830-835, 2003.
	[11] S. Cook, “The Complexity of Theorem Proving Procedures,” in Proc. of the 3rd Annual ACM Symposium on Theory of Computing, 151-158, 1971.
	[12] J. Crawford, M. Ginsberg, E. Luks and A. Roy, “Symmetry- breaking Predicates for Search Problems,” in Proc. of the International Conference on Principles of Knowledge Representation and Reasoning, 148-159, 1996.
	[13] N. Creignou, S. Kanna, and M. Sudan, “Complexity Classifications of Boolean Constraint Satisfaction Problems,” SIAM Press, 2001.
	[14] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for Theorem Proving,” in Journal of the ACM, (5)7, pp. 394-397, 1962.
	[15] DIMACS Graph Coloring Instance. http://mat.gsia.cmu.edu/ COLOR/instances.html
	[16] H. Dixon and M. Ginsberg, “Inference Methods for a Pseudo-Boolean Satisfiability Solver,” in Proc. of the National Conference on Artificial Intelligence (AAAI), 635- 640, 2002.
	[17] E. Goldberg and Y. Novikov, “BerkMin: A fast and robust SAT-solver,” in Proc. of the Design Automation and Test Conference in Europe (DATE), 142-149, 2002.
	[18] C. P. Gomes, B. Selman, and H. Kautz, “Boosting Combinatorial Search Through Randomization,” in Proc. of the National Conference on Artificial Intelligence (AAAI), 431- 437, 1998.
	[19] J. Marques-Silva and K. Sakallah, “GRASP: A Search Algorithm for Propositional Satisfiability,” in IEEE Transactions on Computers, (48)5, 506-521, 1999.
	[20] S. Memik and F. Fallah, “Accelerated Boolean Satisfiability- Based Scheduling of Control/Data Flow Graphs for High- Level Synthesis,” in Proc. of the International Conference on Computer Design (ICCD), 2002.
	[21] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an Efficient SAT Solver,” in Proc. of the Design Automation Conference (DAC), 530-535, 2001.
	[22] G. Nam, F. A. Aloul, K. A. Sakallah, and R. Rutenbar, “A Comparative Study of Two Boolean Formulations of FPGA Detailed Routing Constraints,” in the Proc. of the International Symposium on Physical Design (ISPD), 222-227, 2001.
	[23] A. Ramani, F. A. Aloul, I. L. Markov, and K. A. Sakallah, “Breaking Instance-Independent Symmetries in Exact Graph Coloring,” in Proc. of the Design, Automation, and Test in Europe Conference (DATE), 324-329, 2004.
	[24] L. Silva, J. Silva, L. Silveira and K. Sakallah, “Timing Analysis Using Propositional Satisfiability,” in IEEE International Conference on Electronics, Circuits and Systems, 1998.
	[25] R. Sosic and J. Gu, “Fast Search Algorithms for the N- Queens Problem,” in IEEE Trans. on Systems, Man, and Cybernetics. 21(6), 1572-1576, 1991.
	[26] J. Walsor, “Solving Linear Pseudo-Boolean Constraint Problems with Local Search,” in Proc. of the National Conference on Artificial Intelligence (AAAI), 269-274, 1997.
	[27] J. Whittemore, J. Kim, and K. Sakallah, “SATIRE: A New Incremental Satisfiability Engine,” in Proc. of Design Automation Conference (DAC), 542-545, 2001.
	[28] H. Zhang, “SATO: An Efficient Propositional Prover,” in Intl. Conference on Automated Deduction, 272-275, 1997.
	[29] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik, “Efficient Conflict Driven Learning in a Boolean Satisfiability Solver,” in Proc. of the International Conference on Computer Aided Design (ICCAD), pp. 279-285, 2001.

