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Abstract

Recent algorithmic advances in Boolean satisfiability (SAT), along with highly efficient solver implementations, have enabled the

successful deployment of SAT technology in a wide range of applications domains, and particularly in electronic design automation

(EDA). SAT is increasingly being used as the underlying model for a number of applications in EDA. This paper describes how to

formulate two problems in power estimation of CMOS combinational circuits as SAT problems or 0–1 integer linear programming

(ILP). In these circuits, it was proven that maximizing dissipation is equivalent to maximizing gate output activity, appropriately

weighted to account for differing load capacitances. The first problem in this work deals with identifying an input vector pair that

maximizes the weighted circuit activity. In the second application we attempt to find an estimate for the maximum power-up current in

circuits where power cut-off or gating techniques are used to reduce leakage current. Both problems were successfully formulated as SAT

problems. SAT-Based and generic Integer Linear Programming (ILP) solvers are then used to find a solution. The experimental results

obtained on a large number of benchmark circuits provide promising evidence that the proposed complete approach is both viable and

useful and outperforms the random approach.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The last few years have seen a remarkable growth in the
use of Boolean satisfiability (SAT) models and algorithms
for solving various problems in electronic design automa-
tion (EDA). This is mainly due to the fact that SAT
algorithms have seen tremendous improvements in the last
few years, allowing larger problem instances to be solved in
different applications domains. Such applications include
formal verification [1], FPGA routing [2], global routing
[3], logic synthesis [4], sequential equivalence checking [5],
and VLSI testing [6]. SAT has also been extended to a
variety of applications in Artificial Intelligence including
other well-known NP-complete problems such as graph
colorability, vertex cover, and Hamiltonian path [7].
A recent survey of SAT applications in EDA can be
found in [8].
e front matter r 2007 Elsevier Ltd. All rights reserved.
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SAT solvers have traditionally been used to solve
decision problems. Given a set of Boolean variables and
constraints expressed in products-of-sum form (also known
as conjunctive normal form (CNF)), the goal is to identify
a variable assignment that will satisfy all constraints in the
problem or prove that no such assignment exists. Recently,
SAT solvers have been extended to handle pseudo-Boolean
(PB) constraints [3,9–13], which are simple inequalities that
are equivalent to 0–1 integer linear programming (ILP)
constraints. PB constraints are more expressive and can
replace an exponential number of CNF constraints.
Another key advantage of PB constraints is the ability to
express optimization problems which are traditionally
handled as ILP problems. Hence, SAT solvers can now
handle both decision and optimization problems. Recent
studies have shown that SAT solvers can compete with the
best available generic ILP solvers in solving 0–1 ILP
problems arising in specific applications [3,9].
The growing integration scales in VLSI and the recent

surge in the deployment and initialization of portable
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electronic devices has brought power dissipation to the
forefront as a major design concern. While average power
dissipation is important in mobile applications where
battery life is critical, maximum or peak power is related
to circuit reliability. Excessive power dissipation may cause
run-time errors and device destruction due to overheating,
while excessive instantaneous current through the power
and ground (P&G) nets may result in performance
degradation due to large voltage drops along the P&G
nets, and circuit failures due to electromigration. Hence,
the estimation of maximum possible power in VLSI circuits
is essential for determining the appropriate packaging and
cooling techniques and for optimizing the power and
ground routing networks [14–19].

In CMOS combinational circuits, dynamic power
dissipation due to the switching current from charging
and discharging capacitances can be a major contributor to
the total power dissipated in the circuit. This signal
switching activity is input pattern dependant. To estimate
the maximum switching activity that a circuit might
experience, it is necessary to search for a vector pair
{V1,V2} that tends to maximize this activity. It has been
established that finding this vector pair is an NP-complete
problem [14].

On the same note and due to the continuing decrease in
feature size and increase in chip density, static power
dissipation due to leakage current has become a major
component of the overall power dissipated by a circuit.
One of the techniques used to reduce the effect of leakage
current is power-gating [20]. When power gating is used,
designers partition the circuit into different blocks, each
operating on a block-specific voltage. When not in use a
functional block can be put to sleep by shutting off its
power supply. This power cut-off gating technique is
implemented in CMOS circuits by employing sleep-
transistors that can be used to connect or disconnect the
path of the block to the power supply Vdd or its path to
ground. When these circuits blocks are waken-up from
their sleep mode, a significant power-on charging current is
induced [20]. An estimate of the maximum current during
power-up is essential in designing reliable CMOS circuits.
However, unlike the maximum switching current discussed
earlier which depends on two-input vectors, the maximum
wake-up current depends only on one input vector [16].
Hence, to estimate the maximum instantaneous power-up
current one need to search for an input vector V1 that
maximizes the wake-up activity of the circuit.

Even though in recent years we have seen a surge in the
application of SAT techniques to assist in finding solutions
to various EDA problems, very few researchers reported
on the use of SAT or ILP-based techniques in power
related research. In [14], Devadas et al. formulated the
power dissipation of CMOS circuits as a Boolean function
in term of the primary inputs. They attempted to maximize
the function by solving a weighted max-satisfiability
problem using exact and approximate algorithms. The
technique proved to be practically applicable only to small
circuits. Leakage power, which also contributes to the total
power consumed in a CMOS circuit in addition to the
dynamic or switching activity power, was discussed in [21].
In their work, Aloul et al. used a SAT-based approach to
determine the minimum or maximum leakage state of a
CMOS combinational circuit. Their results showed sig-
nificant improvement over the random-based approach.
The primary objective of this paper is to demonstrate the

validity of using advanced ILP solvers, SAT-based and
generic-based, in addressing the two estimation problems
discussed above. In this work, we first show how to model
the two problems as SAT, i.e. 0–1 ILP, instances, and
secondly we evaluate the performance of the latest SAT
and generic ILP solvers in handling these instances. We
show that generic ILP solvers are likely to achieve better
results than SAT-based and random-based approaches
when solving the proposed power problems.
This paper is organized as follows. Section 2 includes

background information on SAT and ILP. Section 3
describes the estimation problems and their formulation
using 0–1 ILP. Experimental results are presented in
Section 4 and the paper is concluded in Section 5.

2. Boolean SAT and integer linear programming

Boolean SAT is often used as the underlying model in
the field of computer aided designs of integrated circuits.
A number of SAT solvers have been proposed and
implemented [22–25]. These solvers employ powerful
algorithms that are sufficiently efficient to deal with
large-scale SAT problems that typically arise in the EDA
domain. Most of these algorithms claim competitive results
in runtime efficiency and robustness.
In SAT, given a formula f, the objective is to identify an

assignment to a set of Boolean variables that will satisfy a
set of constraints. If an assignment is found, it is known as
a satisfying assignment, and the formula is called satisfi-

able. Otherwise if an assignment does not exist, the formula
is called unsatisfiable. In general, the SAT problem is
defined as follows:

Definition 1. Given a Boolean function f(x1,y, xn) on n

binary variables x1,y, xn, the SAT problem is concerned
with finding an assignment to the variables {x1,y, xn} that
makes the function equal to a constant 1, or proving that
the function is equal to constant 0.

The constraints are typically expressed in CNF. In CNF,
the formula consists of the conjunction (AND) of m
clauses o1,y,om each of which consists of the disjunction
(OR) of k literals. A literal l is an occurrence of a Boolean
variable or its complement. Hence, in order to satisfy a
formula, each of its clauses must have at least one literal
evaluated to true.
As an example, a CNF instance f ða; b; cÞ ¼ ðaþ b̄Þ � ðaþ

bþ cÞ consists of 3 variables, 2 clauses, and 5 literals. The
assignment {a ¼ 0, b ¼ 1, c ¼ 0} leads to a conflict,
whereas the assignment {a ¼ 0, b ¼ 0, c ¼ 1} satisfies f.
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Table 1

CNF formulas representing simple gates
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Despite the problem being NP-complete [36], there have
been dramatic improvements in SAT solver technology
over the past decade. This has lead to the development of
several powerful SAT solvers that are capable of solving
problems consisting of thousands of variables and millions
of constraints in a few seconds [22–26].

Recently, SAT solvers [3,9–13] have been extended to
handle PB constraints which are linear inequalities with
integer coefficients that can be expressed in the normalized
form [3,35] of

a1x1 þ a2x2 þ � � � þ anxnXb, (1)

where ai, bAz and xi are Boolean variables. PB constraints
can, in some cases, replace an exponential number of CNF
constraints. They have been found to be very efficient in
expressing ‘‘counting constraints’’ [3]. Furthermore, PB
extends SAT solvers to handle optimization problems as
opposed to only decision problems. Subject to a given set
of CNF and PB constraints, one can request the
minimization (or maximization) of an objective function
which consists of a linear combination of the problem’s
variables. Note that each CNF constraint can be viewed as
a PB constraint. For example the CNF constraint ðaþ b̄Þ

can be viewed as the PB constraint aþ b̄X1. PB con-
straints represent 0–1 ILP inequalities.

In this paper, we are interested in using advanced ILP
solvers to estimate (i) the maximum power dissipation in
CMOS combinational circuits due to switching activity and
(ii) the maximum power-up current when power-gating
techniques are utilized.

Circuits are easily represented as a CNF formula by
conjuncting the CNF formulas for each gate output. A gate
output can be expressed using a set of clauses which specify
the valid input–output combinations for the given gate.
Hence, a CNF formula j for a circuit is defined as the
union of set of clauses jx for each gate with output x:1

j
[

x2Q

jx (2)

where Q denotes all gate outputs and primary inputs in the
circuit. Table 1 shows generalized CNF formulae for
various gates. For example, a NOR gate with inputs x and
y and output z is represented using the following set of
clauses ðx̄þ z̄Þ � ðȳþ z̄Þðxþ yþ zÞ. If x is assigned the value
1, the first clause will imply z ¼ 0, since this is the only
possible assignment that will satisfy the first clause.
Similarly if x and y are assigned the value 0, z will be
implied to 1 since this is the only assignment that will
satisfy the third clause.

3. Problem description and formulation

The proposed methodology for estimating both, the
maximum switching activity and the maximum power-up
current operates at or assumes a gate level description of
the circuits. In the following section, we elaborate on the
estimation problem by providing the needed theoretical
framework. Additionally, we describe how to express the
estimation problems as SAT instances.

3.1. Estimation of weighted maximum switching activity

Power dissipation in CMOS combinational circuits
arises from the following sources [17,27]: dynamic power
dissipation due to switching current from charging and
discharging the parasitic capacitances, dynamic power dis-
sipation due to short-circuit current when both n-channel
and p-channel transistors are momentarily on at the same
time and static power dissipation due to leakage current
and subthreshold current.
The first source, namely dynamic power dissipation, is

due to the signal switching activity that takes place during
charging and discharging of the capacitors [27]. The signal
switching activity depends on the input patterns applied to
the circuit. Therefore to determine the maximum switching
activity that a circuit can experience, it is necessary to
search for a two-vector input sequence {V1,V2} that
produces the maximum power dissipation [14,28,29]. The
exact solution to this power maximization problem is
NP-complete [14]. A possible scenario is to exhaustively
simulate all possible patterns; however, this is practical for
circuits with a small number of primary inputs. For large
circuits, several heuristic-based approaches were reported
in the literature. In [30], an upper bound of maximum
transition or switching density of individual nodes of
combinational circuits was computed via propagation of
uncertainty waveforms. Test generation-based approaches
have also been reported [18]. A test generation strategy is
devised for finding test patterns that would produce the
maximum node switching corresponding to the maximum
power dissipation; the capacitive load of a gate was
approximated using its fanout; nodes with large fanout
are then assigned transitions which are justified backwards
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until the primary inputs are reached. In [29], the switching
activity maximization problem is shown to be equivalent
to a fault-testing problem on a transformed circuit.
A maximum weighted activity is achieved by test vectors
covering a selected set of faults of the transformed circuit.
In [19], a statistical approach based on the asymptotic
theory of extreme order statistics was presented. The
method is based on the theory of extreme order statistics
applied to the probabilistic distributions of the cycle-by-
cycle power consumption, the maximum likelihood estima-
tion, and the Monte-Carlo simulation.

As explained earlier, dynamic power can be a major
source of energy dissipation in CMOS circuits. The
relationship between the logical behavior of a CMOS
combinational circuit and the energy that the circuit
dissipates is described using the following equation [14]:

E ¼ 0:5CV 2
ddSG, (3)

E is the energy dissipated by the CMOS gate, C is the
output capacitance for the gate and SG is the total number
of gate output transitions, Vdd is the voltage of the power
source and also the assumed voltage swing of the node.

To a first degree of approximation, the capacitance C is
assumed to be directly proportional to the fanout f of the
gate [14,29]. In this work, the effect of interconnect
capacitance is ignored. It is clear from the equation above
and the assumptions made so far, that the product (f �SG)
is directly proportional to the power consumed. Therefore,
to maximize dynamic power dissipation, we need to search
for an input vector pair {V1,V2}, that tends to maximize
the weighted sum of the gates output transitions. The
weights are determined by the capacitances or the fanouts
of each gate in the circuit. The weighted switching activity
(W) of the circuit can be approximated using the following
equation:

W ¼
X

allgates

f iðgiðV1Þ � giðV2ÞÞ, (4)

where fi is the fanout of gate gi, and gi(V1) is the output of
the gate when vector input V1 is applied while gi(V2) is its
output when the vector V2 is applied at the primary inputs.
Here, the summation of ‘‘XOR equal to 1’’ is the number
of switching nodes when the input vector V1 is followed by
input vector V2. Note that a zero-delay model is assumed
for all the gates in the circuit.

To estimate the maximum power dissipated, it is
necessary to identify two-vector input sequence {V1,V2}
that produces weighted maximum switching activity in the
circuit under consideration. In this work, we assume that
after the first vector V1 is applied, the circuit is allowed to
stabilize before the application of the second vector V2.

A 0–1 ILP problem is created with following four groups
of constraints:
1.
 A set of CNF constraints representing the circuit’s
logical behavior after the application of input vector V1.
2.
 A set of CNF constraints representing the circuit’s
logical behavior after the application of input vector V2.
Note that the set of constraints in (1) and (2) are
identical but the variables are renamed differently.
3.
 A set of CNF constraints representing XOR gates
between the outputs of gates in (1) and (2). The number
of XOR gates equals the number of gates in the original
circuit. An XOR gate output of logic 1 indicates that a
transition (0 to 1 or 1 to 0) has occurred at the output of
the gate in the original circuit upon the successive
application of the vector V1 followed by vector V2.
4.
 A PB objective constraint which specifies the weights of
the XOR outputs. Weights are computed based on the
capacitance of the gate which is assumed to be
proportional to the fanout of the gate.

Constraints (1) and (2) represent the circuit’s logical
behavior following the application of the two vectors
respectively. The constraints are represented as explained
in Section 2. Constraint (3) compares the output of the
same gate for the two vectors. If a transition or a change in
the output has occurred the XOR gate will produce an
output of 1, else, the XOR gate output will be 0. Here also,
the constraint is expressed using the principles explained in
Section 2. A new variable is declared for each XOR gate’s
output to indicate whether a transition occurred in the
original circuit. Finally, the goal of the objective function
in constraint (4) is to identify the two input vectors that
would maximize the number of transitions in the circuit.
This is expressed as a PB constraint consisting of the sum
of the XOR gate’s outputs. In other words, this can be
viewed as a constraint representing the predicate, ‘‘there

exist two input vectors that can cause a weighted summation

of gate transitions 4k’’ where k is an integer value. In
formulating the problem, integer coefficients are used to
represent the fanout (capacitance) of each gate.
3.2. An illustrative example

In this subsection we use the circuit shown in Fig. 1 to
provide the reader with an example that clearly illustrates
the various steps of the proposed approach.
The circuit shown in the example has three primary

inputs a, b and c. To generate consistency functions for two
circuit instances (Circuit A and Circuit B in the above
example), the variables were renamed as a1, a2, b1, b2, c1, c2,
d1, d2, etc. The CNF clauses representing the circuits’
consistency functions are generated. CNF clauses repre-
senting the XOR gates between the outputs of gates in
circuits A and B are expressed as shown in the output
conditions. The objective function consists of the sum of all
XOR outputs. Each output is associated with an integer
coefficient that is equal to the fanout of the gate. In the
given example d, f, and g have a fanout of 1 and e has a
fanout of 2. The optimization instance is passed to the ILP
solver which returns the assignment: {a1, b1, c1, a2, b2,
c2} ¼ {1, 1, 0, 0, 1, 1}. The assignment yields the maximum
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Fig. 1. An illustrative example showing how to determine the weighted number of possible transitions in a circuit. (a) Original circuit. (b) Constraints

needed to compute the input pair.
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possible switching activity that the given circuit can
experience.

3.3. Maximum power-up current estimation

As technology scales, leakage power is becoming a
growing problem for battery-operated devices and will
grow exponentially as power supplies and threshold
voltages scale down in future processes.

One of the techniques used in leakage power manage-
ment is to partition the design into different blocks, where
each block operates on a specific voltage. This technique
provides designers with the ability to switch off the block
supply when the functional block does not have any logic
activity to perform. Switching the supply off will minimize
leakage current and the power dissipation caused by it.
This power cut-off or power gating technique is imple-
mented using a sleep transistor. For example, in CMOS
circuits, a PMOS sleep transistor with a high threshold
voltage can be used to switch-on or switch-off the Vdd

supply of a block. Similarly, an NMOS transistor can be
used to connect or disconnect the block path to ground.
When these circuit blocks are woken-up from their sleep
mode, a significant power-on charging current comparable
to that of a normal switching current is induced [20]. This
current, if excessive, produces surges that may cause Ldi/dt

and IR voltage drops and electromigration. This has a
negative impact on circuit reliability and performance.
Therefore an estimate of the maximum current during
power-up is essential in designing reliable and high
performance CMOS combinational circuits. Unlike the
maximum switching current which depends on two input
vectors [17], maximum wake-up current depends only on
one input vector. Assume that we are using a PMOS sleep
transistor and all internal nodes are fully discharged during
sleep mode. Therefore, power-up current will be propor-
tional to the total charge that needs to be recovered after
wake-up [16]. This power up current is given by

P ¼
X

allgates

ðValðgÞ � CðgÞ � VddÞ. (5)

In (5), C(g) represents the load capacitance of the gate g,
Val(g) is the logic value of the gate output and Vdd is the
supply voltage. Assuming that all gates have the same input
capacitance and ignoring wire capacitance and assuming
C(g) is proportional to the fanout of the gate, the above
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equation can be simplified to [16]

P ¼
X

allgates

ðValðgÞ � FanoutðgÞÞ. (6)

P can be used as a measure of the power up current.
Hence, the estimation problem reduces to finding the input
vector that maximizes P. A gate with a logical output value
of 1 implies that there is a charge of (C(g) �Vdd) stored in
the load capacitance. A possible solution is to exhaustively
simulate all possible input vectors, however, this is
impractical for circuits with large number of inputs. In
[16,20], algorithms based on automatic test pattern
generation (ATPG) techniques were used to find a vector
that maximizes P. The results reported were encouraging
but further investigation of this problem is still warranted.
In this paper, we formulate the estimation problem as a
SAT (i.e. 0–1 ILP) instance. We experiment with powerful
SAT-based and generic ILP solvers in finding an estimate
for the power P. The presented approach is complete and
identifies the input vector that guarantees the maximum
possible value for P.

To estimate the maximum instantaneous power, one
needs to search for an input vector that maximizes the
weighted wake-up activity of P. The weight of each gate is
determined by its fanout as indicated in Eq. (6).

The power estimation problem is formulated as an 0–1
ILP problem as follows: (i) a set of CNF constraints
representing the logical behavior of the circuit; and (ii) a
PB objective function representing the power-up for each
gate.

3.4. An illustrative example

An example is shown in Fig. 2 that clearly illustrates the
various steps of the proposed approach. The circuit shown
in the example has four gates and three primary inputs.
A total of seven variables are needed in the problem. CNF
constraints representing the circuit’s logical behavior are
generated. The objective function consists of the sum of the
output of all four gates. Each output is associated with an
integer coefficient that is equal to the fanout of the gate.
Fig. 2. An illustrative example showing how to determine the maximum

power-up in a circuit.
In the given example d, f, and g have a fanout of 1 and e

has a fanout of 2. The optimization instance is passed to
advanced 0–1 ILP solvers which return the assignment:
{a, b, c} ¼ {0, 1, 0}. The assignment yields the input vector
that generates a maximum power-up of 5. The goal here is
to use the advanced features in 0–1 ILP solvers (e.g.
intelligent decision heuristics and learning) to speedup the
search for finding the required input vector.

4. Experimental results

In this section, we will report and discuss the experi-
mental results for both problems. The results were
obtained using the SAT-based ILP solvers PBS 4.0 [3],
Galena [9], and MiniSAT+ [11], in addition to the
commercial ILP solver CPLEX 7.0 [31]. PBS, Galena,
and MiniSAT+ are considered to be three of the best
SAT-based 0–1 ILP solvers and have won several
categories in the annual SAT/PB competition. PBS
implements advanced CNF learning techniques [23,24].
Galena uses advanced cutting-plane PB learning and post
reduction of PB constraints to cardinality constraints.
MiniSAT+ uses efficient methods of converting PB
constraints to CNF constraints as shown in [32]. CPLEX
is a commercial tool that is considered one of the best
available generic ILP solvers. It has been used by many
researchers to evaluate the performance of SAT-based 0–1
ILP solvers.
All experiments were conducted on an Intel Xeon 3.2

Ghz workstation running Linux with 4 GB of RAM. We
used the default settings for PBS, Galena, MiniSAT+, and
CPLEX. We used the MCNC [33] benchmark circuits.
Each benchmark was sensitized using ‘‘sis’’ [34] into a
circuit consisting of 2-input NAND, NOR and inverter
gates. The runtime was set to a limit of 1000 s. Note that all
solvers perform a complete search, i.e. if an optimal
solution is found, no other input vector can return a better
solution.
In order to speed up the SAT and ILP solvers by

eliminating a large number of input vectors and thus
reducing the search space, an initial objective goal was
identified by generating 10K random primary input vectors
and identifying the (i) maximum weighted switching
activity achieved and (ii) maximum power-up current
estimate using these randomly generated vectors. The
random approach helps eliminate significant parts of the
search space as shown in Tables 2 and 3 [15]. The random
approach runtime did not exceed one minute in all cases.

4.1. Weighted maximum switching activity results

Table 2 lists the experimental results for PBS, Galena,
MiniSAT+, and CPLEX. The first four columns describe
the circuit; #PI is the number of primary inputs, #Gates
represents the total number of gates in the circuit; column
MaxPos gives the theoretical upper bound or the maximum
weighted switching activity that can be attained only if all
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Table 2

Experimental results for the weighted maximum switching activity experiment using the SAT-based 0–1 ILP solvers PBS, Galena, MiniSAT+, and the

generic ILP solver CPLEX

Circuit name #P1 #Gates MaxPos Random MiniSAT+ PBS4 Galena CPLEX

Time Value %-Max Time Value %-Max Time Value %-Max Time Value %-Max

pcle 19 71 92 68 0.32 69 75.0 0.42 69 75.0 0.11 69 75.0 0.48 69 75.0

parity 16 75 89 60 1.38 61 68.5 304.8 61 68.5 29.22 61 68.5 1.1 61 67.4

cc 21 79 104 85 0.3 88 84.6 0.09 88 84.6 0.14 88 84.6 0.59 88 84.6

cm150a 21 79 89 76 0.1 84 94.4 0.02 84 94.4 0.04 84 94.4 0.4 84 94.4

pcler8 27 104 140 90 0.22 110 78.6 1.47 110 78.6 0.62 110 78.6 0.81 110 78.6

mux 21 106 130 101 5.25 115 88.5 0.25 115 88.5 0.31 115 88.5 1.36 115 88.5

cordic 23 124 152 100 3.33 113 74.3 41K 112 73.7 233 113 74.3 40.3 113 74.3

i3 132 132 132 76 0.09 132 100 0.02 132 100 0.02 132 100 0.03 132 100

frg1 28 143 167 119 1.43 164 98.2 0.01 164 98.2 0.29 164 98.2 0.98 164 98.2

sc1 19 143 198 149 1.29 179 90.4 0.23 179 90.4 0.31 179 90.4 1.64 179 90.4

mnreg 36 145 163 110 0.97 131 80.4 41K 127 77.9 112 131 80.4 1.34 131 80.4

b9 41 147 183 130 0.21 164 89.6 0.18 164 89.6 0.45 164 89.6 1.45 164 89.6

count 35 161 221 133 0.84 173 78.3 41K 171 77.4 41K 171 77.4 1.4 173 78.3

lal 26 179 247 185 0.69 223 90.3 0.9 223 90.3 0.92 223 90.3 2.13 223 90.3

c8 28 211 289 199 9.85 235 81.3 679 235 81.3 173 235 81.3 18.1 235 81.3

i2 201 242 255 115 3.1 251 98.4 0.2 251 98.4 0.18 251 98.4 2.12 251 98.4

cht 47 249 328 229 1.55 295 89.9 41K 286 87.2 696 295 89.9 5.8 295 89.9

C432 36 282 436 266 103 358 82.1 41K 358 82.1 41K 347 79.6 15 358 82.1

apex7 49 295 414 255 22.4 325 78.5 41K 325 78.5 621 325 78.5 131 325 78.5

ttt2 24 303 425 281 41.4 336 79.1 29.2 336 79.1 66.9 336 79.1 55.6 336 79.1

l4 192 308 308 165 0.33 308 100 0.02 308 100 0.03 308 100 0.05 308 100

example2 85 351 493 279 32.3 353 71.6 41K 342 69.4 41K 280 56.8 18.2 353 71.6

l5 133 445 511 288 14.4 511 100 0.67 511 100 41K 288 56.4 0.11 511 100

term1 34 525 739 485 41K 485 65.6 41K 577 78.1 41K 559 75.6 474 608 82.3

vda 17 1417 2419 665 41K 665 27.5 439 689 28.5 490 689 28.5 365 689 28.5

frg2 142 1701 2564 1472 41K 1472 57.4 41K 1658 64.7 41K 1657 64.6 459 1979 77.2

pair 172 1955 2906 1415 41K 1415 48.7 41K 1844 63.5 41K 1415 48.7 41K 2019 69.5

C6288 32 2400 4271 2202 41K 2226 52.1 41K 2311 54.1 41K 2548 59.7 41K 2229 47.5

t481 16 4767 7176 3877 41K 4624 64.4 41K 4889 68.1 41K 3955 55.1 41K 5267 73.4
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the gates switched simultaneously. The Random column
represents the maximum weighted switching activity
obtained using the random vector generation approach
[15]. The Time column indicates the runtime (in seconds)
for each solver. The column labeled Value represents the
maximum weighted activity value obtained using each
solver. The %-Max column gives the percentage of the
activity reported by the solver (Value) relative to the
maximum upper bound (MaxPos). Several observations
are in order:
�
 In all but three cases, CPLEX was successful in
computing the optimal weighted switching activity.

�
 PBS, Galena, and MiniSAT+ were able to compute the

optimal weighted switching value in all but 12, 9, and 6
cases, respectively. But for circuits where the solvers
timed-out, the solver did return the best weighted
switching value seen so far. This can be viewed as a
lower bound of the possible optimal weighted switching
value. Giving any of the solvers extra time would have
probably helped tighten the gap or even solve the
problem by finding the optimal value.
�
 The ILP solvers are fast for most small- and medium-
size circuits but as circuits become larger, the ILP
solvers become slower. Perhaps, larger circuits can be
partitioned to speed up the search process.

�
 The random approach was unable of identifying the

optimal weighted switching activity value in any of the
presented instances.

�
 The proposed approach was able to improve on top of

the random approach by a factor of 20%on average and
in some cases by 55%. For example, PBS was able to
improve on the value obtained by the random approach
by a factor of 55% for the i2 circuit. Detecting such a
difference in the weighted switching activity estimation
can be very useful (see Fig. 3).

�
 ILP solvers can thus be used to verify and perhaps

improve the optimal weighted switching activity value
identified by the random approach.

�
 In some cases, the optimal weighted switching activity value

returned by the two solvers was very close to the theoretical
value (MaxPos). In scenarios like these, the architectural
aspects of the circuit can be modified or careful attention
has to be paid to the cooling techniques used.
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Table 3

Experimental results for the maximum power-up current estimation experiment using the SAT-based 0–1 ILP solvers PBS, Galena, and MiniSAT+, and

the generic ILP solver CPLEX

Circuit name #P1 #Gates MaxPos Random MiniSAT+ PBS4 Galena CPLEX

Time Value %-Max Time Value %-Max Time Value %-Max Time Value %-Max

pcler8 27 104 140 80 9.09 80 57.1 0.21 80 57.1 0.21 80 57.1 0.01 80 57.1

mux 21 106 130 87 0.09 89 68.5 0.02 89 68.5 0.01 89 68.5 0.01 89 68.5

cordic 23 124 152 96 11.2 98 64.5 6.58 98 64.5 2.03 98 64.5 0.01 98 64.5

frg1 28 143 167 106 1.89 111 66.5 9.63 111 66.5 2.07 111 66.5 0.01 111 66.5

sct 19 143 198 128 0.37 129 65.2 0.04 129 65.2 0.01 129 65.2 0.01 129 65.2

b9 41 147 183 120 3.01 123 67.2 059 123 67.2 0.34 123 67.2 0.01 123 67.2

lal 26 179 247 159 1.34 162 65.6 0.29 162 65.6 0.08 162 65.6 0.01 162 65.6

c8 28 211 289 185 5.55 192 66.4 4.93 192 66.4 0.55 192 66.4 0.01 192 66.4

9sym 9 252 356 229 0.2 230 64.6 0.1 230 64.6 0.02 230 64.6 0.01 230 64.3

C422 36 282 436 263 2.9 274 62.8 32.2 274 62.8 2.82 274 62.8 0.01 274 62.8

m2 24 303 425 267 317 267 62.8 2 267 62.8 2.93 267 62.8 0.02 267 62.8

C880 60 442 616 352 41K 352 57.1 41K 355 57.6 41K 360 58.4 0.09 367 59.6

i5 133 445 511 304 51.1 348 68.1 41K 332 65.0 41K 345 67.5 0.04 348 68.1

alu2 10 462 738 425 1.13 426 57.7 0.25 426 57.7 0.09 426 57.7 0.12 426 57.6

term1 34 525 739 477 41K 477 64.5 82.3 485 65.6 158 485 65.6 0.03 485 65.6

C1355 41 552 894 578 41K 578 64.7 41K 579 64.8 41K 579 64.8 1.19 588 65.8

C499 41 567 891 526 41K 526 59.0 41K 526 59.0 41K 536 60.2 0.19 544 61.1

C1908 33 771 1219 737 41K 737 60.5 41K 745 61.1 41K 742 60.9 0.25 754 61.9

alu4 14 878 1419 802 45.7 802 56.5 6.21 802 56.5 2.27 802 56.5 3.37 802 56.4

C2670 155 1087 1628 963 41K 963 59.2 41K 989 60.7 41K 973 59.8 1.41 1014 52.3

vda 17 1417 2419 1570 41K 1572 65.0 2.29 1572 65.0 0.22 1572 65.0 0.17 1572 65.0

C3540 50 1526 2538 1456 41K 1456 57.4 41K 1486 58.6 41K 1496 58.9 20.5 1529 60.2

pair 172 1955 2906 1628 41K 1628 56.0 41K 1701 58.5 41K 1683 57.9 0.45 1787 61.5

C6288 32 2400 4271 2833 41K 2833 66.3 41K 2833 66.3 41K 2833 66.3 3.71 2833 66.3

C5315 178 2513 3879 2205 41K 2205 56.8 41K 2248 58.0 41K 2232 57.5 22.1 2368 61.0

l10 257 3366 5454 2936 41K 2936 53.8 41K 3002 55.0 41K 2996 54.9 5.84 3120 57.2

C7552 206 3381 5547 3156 41K 3156 56.9 41K 3229 58.2 41K 3227 58.2 16.6 3306 59.6

i8 133 3764 6504 3818 41K 3818 58.7 41K 3818 58.7 41K 3818 58.7 5.61 3882 59.7

t481 16 4767 7176 4785 41K 4952 69.0 442 4952 69.0 7.08 4952 69.0 1.11 4952 69.0

Fig. 3. Maximum values of the weighted switching activity using the random

vector generation approach and CPLEX solver. The theoretical upper bound

of the weighted switching activity value (MaxPos) is also shown.
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�
 It was also clear in other cases that the maximum
possible weighted switching activity value is much
smaller than the theoretical value. For example, while
the maximum theoretical value for the vda circuit was
2419, three solvers are able to prove that the maximum
possible weighted switching value is only 689.

�
 Finally, for the presented application, generic ILP

solvers, e.g. CPLEX, perform much better than
SAT-based 0–1 ILP solvers, e.g. PBS, Galena, and
MiniSAT+.

4.2. Maximum power-up current estimation results

Table 3 summarizes the results for the maximum power-
up current estimation problem. The circuit name is
provided in the first column. Columns two and three list
the number of primary inputs and the number of gates in
each circuit. Column four of the table (MaxPos) is the
theoretical upper maximum for P (it assumes that all the
gates in the circuit will contribute to the summation in
Eq. (6)). The Random column represents the best estimate
found using random vector generation. The Time column
indicates the runtime (in seconds) for each solver. The
Value column represents the maximum weighted activity
value obtained using each solver. The %-Max column gives
the percentage of the activity reported by the solver (Value)
relative to the maximum upper bound (MaxPos). While
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Fig. 4. Maximum values of the power-up current using the random vector

generation approach and CPLEX solver. The theoretical upper bound of

the power-up current value (MaxPos) is also shown.
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PBS, Galena, and MiniSAT+ timed out on some
instances, CPLEX was successful in solving all presented
instances. Nevertheless, all four search engines succeeded
in improving the results obtained using the random
approach by returning higher estimates or proving that
the estimate returned by the Random approach is optimal
(see Fig. 4). In cases where the solver completes the search
(times-out), the estimate provides an upper (lower) bound
of the maximum wake-up switching activity possible in the
circuit.
5. Conclusions

Recently, Boolean satisfiability (SAT) techniques have
been drawing wide research interest and has been shown to
be successful in various applications in the Electronic
Design Automation domain. In this paper we presented a
complete 0–1 ILP-based solution to two power estimation
problems that have a direct impact on circuit reliability and
performance.

We formulated the problems within an Integer Linear
Programming (ILP) context and experimented with ad-
vanced SAT-based 0–1 ILP solvers, e.g. PBS, Galena, and
MiniSAT+, and generic ILP solvers, e.g. CPLEX, to
demonstrate that an optimal solution can be found in most
cases and in a reasonable amount of time. Results indicate
that by using these solvers we can improve on random-
based approaches. Furthermore, generic ILP solvers tend
to outperform SAT-based 0–1 ILP solvers on the proposed
problems. The proposed approach is complete and is
guaranteed to find the optimal answer given enough time
and memory resources. In many cases, the optimal value
obtained by the ILP solvers was significantly smaller than
the maximum theoretical value which represents a pessi-
mistic upper bound. Future work will include the extension
and investigation of the viability of this approach when
applied to sequential circuits.

References

[1] A. Biere, B. A. Cimatti, E. Clarke, M. Fujita, Y. Zhu, Symbolic model

checking using SAT procedures instead of BDDs, in: Proceedings of

the Design Automation Conference (DAC), 1999, pp. 317–320.

[2] G. Nam, F.A. Aloul, K.A. Sakallah, R. Rutenbar, A comparative

study of two boolean formulations of FPGA detailed routing

constraints, in: Proceedings of the International Symposium on

Physical Design (ISPD), 2001, pp. 222–227.

[3] F.A. Aloul, A. Ramani, I.L. Markov, K.A. Sakallah, generic ILP

versus specialized 0–1 ILP: an update, in: Proceedings of the

International Conference on Computer-Aided Design (ICCAD),

2002, pp. 450–457.

[4] S. Memik, F. Fallah, Accelerated boolean satisfiability-based schedul-

ing of control/data flow graphs for high-level synthesis, in: Proceedings

of the International Conference on Computer Design (ICCD), 2002.

[5] P. Bjesse, K. Claessen, SAT-based verification without state space

traversal, in: Proceedings of Formal Methods in Computer-Aided

Design (FMCAD), 2000, pp. 372–389.

[6] Z. Zeng, K. Talupuru, M. Ciesielski, ‘‘Functional test generation

based on word-level SAT, J. System Archit. 51 (2005) 488–511.

[7] N. Creignou, S. Kanna, M. Sudan, Complexity Classifications of

Boolean Constraint Satisfaction Problems, SIAM Press, 2001.

[8] J. Marques-Silva, K. Sakallah, Boolean satisfiability in electronic

design automation, in: Proceedings of the Design Automation

Conference (DAC), 2000, pp. 675–680.

[9] D. Chai, A. Kuehlmann, A fast pseudo-boolean constraint solver, in:

Proceedings of the Design Automation Conference (DAC), 2003,

pp. 830–835.

[10] H. Dixon, M. Ginsberg, Inference methods for a pseudo-boolean

satisfiability solver, in: Proceedings of the National Conference on

Artificial Intelligence (AAAI), 2002, pp. 635–640.

[11] N. Een, N. Sorensson, An extensible SAT-solver, in: Proceedings of

the International Conference on Theory and Applications of

Satisfiability Testing (SAT), 2003, pp. 502–508.

[12] H. Sheini, K. Sakallah, Pueblo: a modern pseudo-boolean SAT

solver, DATE 2 (2005) 684–685.

[13] J. Whittemore, J. Kim, K. Sakallah, SATIRE: a new incremental

satisfiability engine, in: Proceedings of Design Automation Con-

ference (DAC), 2001, pp. 542–545.

[14] S. Devadas, K. Keutzer, J. White, Estimation of power dissipation in

CMOS combinational circuits using Boolean function manipulation,

IEEE Trans. on CAD 11 (3) (1992) 373–383.

[15] J. Halter, F. Najm, A gate-level leakage power reduction method for

ultra-low-power CMOS circuits, in: Proceedings of the IEEE 1997

Custom Integrated Circuits Conference, 1997, pp. 475–478.

[16] F. Lei, L. Hei, K. Saluja, Estimation of maximum power-up current,

ASPDAC, 2002, pp. 51–58.

[17] M. Pedram, Power minimization in IC design: principles and

applications, ACM Trans. Design Automat. Electron. Systems 1 (1)

(1996) 3–56.

[18] C. Wang, K. Roy, Maximum power estimation for CMOS circuits

using deterministic and statistic approaches, in: Proceedings of the

9th Inernational Conference on VLSI Design, 1995, pp. 364–369.

[19] Q. Wu, Q. Qiu, M. Pedram, Estimation of peak power dissipation in

VLSI circuits using the limiting distributions of extreme order

statistics, IEEE Trans. Computer-Aided Des. Integr. Circ. Systems 20

(8) (2001) 942–956.

[20] F. Lei, L. He, Maximum Current Estimation Considering Power

Gating, ISPD, 2001.

[21] F. Aloul, S. Hassoun, K. Sakallah, D. Blaauw, Robust SAT-based

search algorithm for leakage power reduction, in: Proceedings of the

International Workshop on Power and Timing Modeling, Optimiza-

tion and Simulation (PATMOS), 2002, pp. 167–177.



ARTICLE IN PRESS
A. Sagahyroon, F.A. Aloul / Microelectronics Journal 38 (2007) 706–715 715
[22] E. Goldberg, Y. Novikov, BerkMin: a fast and robust SAT-solver, in:

Proceedings of the Design Automation and Test Conference in

Europe (DATE), 2002, pp. 142–149.

[23] J. Marques-Silva, K. Sakallah, GRASP: a search algorithm for

propositional satisfiability, IEEE Trans. Comput. 48 (5) (1999) 506–521.

[24] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff:

engineering an efficient SAT solver, in: Proceedings of the Design

Automation Conference (DAC), 2001, pp. 530–535.

[25] H. Zhang, SATO: an efficient propositional prover, in: Proceedings

of the International Conference on Automated Deduction, 1997,

pp. 272–275.

[26] R.J. Bayardo Jr., R.C. Schrag, Using CSP look-back techniques to

solve real world SAT instances, in: Proceedings of the 14th National

Conference on Artificial Intelligence, 1997, pp. 203–208.

[27] K. Roy, S. Prasad, Low-Power CMOS VLSI Circuit Design, Wiley,

2000.

[28] M.S. Hsiao, Peak power estimation using genetic spot optimization

for large VLSI circuits, in: Proceedings of the European Design and

Test Conference, 1999, pp. 175–179.
[29] S. Manich, J. Figueras, Maximizing the weighted switching activity in

combinational CMOS circuits under variable delay model, in:

Proceedings of the European Design and Test Conference, 1997,

pp. 597–602.

[30] F. Najm, M. Zhang, Extreme delay sensitivity and the worst-case

switching activity in VLSI circuits, in: DAC, 1995, pp. 623–627.

[31] ILOG CPLEX, /http://www.ilog.com/products/cplexS.

[32] N. Een, N. Sorensson, Translating pseudo-boolean constraints into

SAT, J. Satisfiab Boolean Model Comput. 2 (2006) 1–26.

[33] MCNC Benchmarks, /http://www.cbl.ncsu.edu/CBL_Docs/Bench.

htmS.

[34] E. Sentovich, et al., SIS: A System for Sequential Circuit Synthesis,

University of California, Berkeley, 1992 (UCB/ERL M92/41).

[35] P. Barth, A Davis–Putnam based enumeration algorithm for linear

pseudo-boolean optimization, Technical Report MPI-I-95-2-003,

Max-Planck-Institut Für Informatik, 1995.

[36] S. Cook, The complexity of theorem proving procedures, in:

Proceedings of the 3rd Annual ACM Symposium on Theory of

Computing, 1971, pp. 151–158.

http://www.ilog.com/products/cplex
http://www.cbl.ncsu.edu/CBL_Docs/Bench.htm
http://www.cbl.ncsu.edu/CBL_Docs/Bench.htm

	Using SAT-based techniques in power estimation
	Introduction
	Boolean SAT and integer linear programming
	Problem description and formulation
	Estimation of weighted maximum switching activity
	An illustrative example
	Maximum power-up current estimation
	An illustrative example

	Experimental results
	Weighted maximum switching activity results
	Maximum power-up current estimation results

	Conclusions
	References


